Apertus
  • Documentation
  • Introduction
    • Definitions
      • Coordinate systems
      • Primitives
    • Features
      • Basic
        • Nodes
        • Light sources
        • Geometries
        • Primitives
        • Texts
      • Environment simulation
        • Water
        • Sky
        • Terrain
      • Browser
      • UI technologies
        • HTML UI
        • Presentation
        • Gallery
      • PointCloud
      • 360
        • 360 Images
        • 360 Videos
      • 3D Model Formats
      • Scene Sharing
        • Multiplayer
      • Video and Voice Chat
      • Hand Tarcking
        • Leap Motion
      • Head Tracking
        • Fob
      • Displays
        • Multi Display
        • Cave System
        • HMDs
      • Industry
        • IoT, and Sensors
        • Robot monitoring
        • Robot calibration
  • Developers
    • Development Cycle
    • Architecture
      • Project folders
      • Configuration ecosystem
    • API
      • C++ API
      • JavaScript API
      • HTTP REST API
    • Getting Started
      • Creating a plugin
      • Creating a sample
  • Contribute
    • Report a Bug
    • Suggest a Feature
  • Tutorial - How to visualize CAD models in VR
    • Introduction
    • Import CAD Models
    • Convert CAD Models
    • Create Low-poly from CAD Models
    • Create Photorealistic CAD Models
  • Plugins - Photorealistic Render
  • Plugins - Physics
  • Tutorial - How to visualize Tensorflow training in VR
  • Tutorial - Virtual Learning Factory Toolkit Gamification
  • Overview
    • Introduction
    • Architecture
    • Use Cases
  • Installation
    • Windows
    • Android
      • How to use
      • Writing an application
    • MacOS
  • Build
    • Windows
      • How to build the source on Windows
    • Android
    • MacOS
  • Plugins on Windows
    • Photorealistic Render
      • How to use
      • How to configure
      • Features
      • Sample
    • Physics
      • How to use
      • How to configure
      • Features
      • Samples
      • Demo video
  • Plugins on Android
    • Java Native Interface
      • How to use
      • Extending the API
    • Filament render
      • How to use
      • How to configure
      • Developers
  • Plugins on MacOS
    • Untitled
  • Samples on Windows
    • Deep learning
      • Untitled
      • Use the Fastai-PythorchVR Sample
      • Use the HTTP API
      • Create HTTP Requests from Python
      • Demo video
    • Virtual Learning Factory Toolkit Gamification
      • Installation
      • Lobby - User Interface
      • Local - User Interface
      • Student - User Interface
      • Teacher - User Interface
      • VLFT Gamification Session
      • VR Mode
  • Virtual Learning Factory Application
    • Installation on Windows
    • Installation on Apple
    • Lobby
    • Single Player
    • Multi Player - Student
    • Multi Player - Teacher
Powered by GitBook
On this page
  1. Plugins on Windows
  2. Photorealistic Render

Sample

PreviousFeaturesNextPhysics

Last updated 5 years ago

The PhotorealisticScene sample is the example that shows our Photorealistic Render plugin in action. It has two configurations. When you start the sample you can choose two configurations: gltf or ogre_mesh. The ogre_mesh option is going to show you a scene with PBS materials loaded from a .mesh file.

The gltf option shows two glTF objects in the scene.

The sample is using the apePhotorealisticScenePlugin to create light and to load objects from .mesh files as seen on the first picture. On the other hand, when you are using glTF, the models are loaded with the apeAssimpAssetLoaderPlugin. Be aware that if you are using apeAssimpAssetLoaderPlugin in your own sample you should not call ape::Event::Type::GEOMETRY_FILE_FILENAME in your plugin with a .mesh file because that results in crash.

ogre_mesh configuration
gltf configuration